Agnostic Active Learning Without Constraints
ثبت نشده
چکیده
We present and analyze an agnostic active learning algorithm that works withoutkeeping a version space. This is unlike all previous approaches where a restrictedset of candidate hypotheses is maintained throughout learning, and only hypothe-ses from this set are ever returned. By avoiding this version space approach, ouralgorithm sheds the computational burden and brittleness associated with main-taining version spaces, yet still allows for substantial improvements over super-vised learning for classification.
منابع مشابه
Agnostic Active Learning Without Constraints
We present and analyze an agnostic active learning algorithm that works without keeping a version space. This is unlike all previous approaches where a restricted set of candidate hypotheses is maintained throughout learning, and only hypotheses from this set are ever returned. By avoiding this version space approach, our algorithm sheds the computational burden and brittleness associated with ...
متن کاملSufficient Conditions for Agnostic Active Learnable
We study pool-based active learning in the presence of noise, i.e. the agnostic setting. Previous works have shown that the effectiveness of agnostic active learning depends on the learning problem and the hypothesis space. Although there are many cases on which active learning is very useful, it is also easy to construct examples that no active learning algorithm can have advantage. In this pa...
متن کاملBeyond Disagreement-Based Agnostic Active Learning
We study agnostic active learning, where the goal is to learn a classifier in a pre-specified hypothesis class interactively with as few label queries as possible, while making no assumptions on the true function generating the labels. The main algorithms for this problem are disagreement-based active learning, which has a high label requirement, and margin-based active learning, which only app...
متن کاملThe Relationship Between Agnostic Selective Classification Active Learning and the Disagreement Coefficient
A selective classifier ( f ,g) comprises a classification function f and a binary selection function g, which determines if the classifier abstains from prediction, or uses f to predict. The classifier is called pointwise-competitive if it classifies each point identically to the best classifier in hindsight (from the same class), whenever it does not abstain. The quality of such a classifier i...
متن کاملSmoothness, Disagreement Coefficient, and the Label Complexity of Agnostic Active Learning
We study pool-based active learning in the presence of noise, that is, the agnostic setting. It is known that the effectiveness of agnostic active learning depends on the learning problem and the hypothesis space. Although there are many cases on which active learning is very useful, it is also easy to construct examples that no active learning algorithm can have an advantage. Previous works ha...
متن کامل